
Right or Wrong? – Verification of Model Transformations
using Colored Petri Nets∗

M. Wimmer
TU Vienna

wimmer@big.tuwien.ac.at

G. Kappel
TU Vienna

gerti@big.tuwien.ac.at

A. Kusel
JKU Linz

kusel@bioinf.jku.at
W. Retschitzegger
University of Vienna

werner@bioinf.jku.at

J. Schoenboeck
TU Vienna

schoenboeck@bioinf.jku.at

W. Schwinger
JKU Linz

wieland@schwinger.at

ABSTRACT
Model-Driven Engineering (MDE) places models as first-
class artifacts throughout the software lifecycle requiring the
availability of proper transformation languages. Most of to-
day’s approaches use declarative rules to specify a mapping
between source and target models which is then executed
by a transformation engine. Transformation engines, how-
ever, most often hide the operational semantics of the map-
ping and operate on a considerable lower level of abstraction,
thus hampering debugging. To tackle these limitations we
propose a framework called TROPIC (Transformations on
Petri Nets in Color) providing a DSL on top of Colored Petri
Nets (CPNs) to specify, simulate, and formally verify model
transformations. The formal underpinnings of CPNs en-
ables simulation and verification of model transformations.
By exploring the constructed state space of CPNs we show
how predefined behavioral properties as well as custom state
space functions can be applied for observing and tracking
origins of errors during debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Model Transformation, CPN, Verification, Debugging

1. INTRODUCTION
MDE places models as first-class artifacts throughout the

software life cycle, whereby model transformation languages
play a vital role [5]. Several kinds of dedicated transforma-
tion languages are available (see [2] for an overview), the

∗This work has been funded by the Austrian Science Fund
(FWF) under grant P21374-N13.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DSM Workshop at OOPSLA ’09 Orlando, Florida USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

majority of them favoring declarative, rule based specifica-
tions to express mappings between source and target models,
as is the case with the QVT Relations standard [1].

To execute the specified mapping, transformation engines
are used, hiding the operational semantics and operating on
a considerable lower level of abstraction. On the one hand
this relieves transformation designers from burdens, like the
necessity to specify a certain execution order. On the other
hand, as transformation specifications grow larger, requiring
numerous rules working together, this considerably hampers
observing, tracking origins, and fixing of possible errors, be-
ing the main phases of debugging. As the correctness of
the automatically generated target model fully depends on
the correctness of the specified model transformation [13],
formal underpinnings are required to enable verification of
model transformations by proving certain properties like
confluence and termination, to ease debugging [11].

To alleviate the above mentioned problems we propose
TROPIC (TRansformations On Petri Nets In Color) [17,
18, 19], a framework providing declarative, reusable map-
ping operators based on a DSL on top of Colored Petri
Nets (CPNs) [6] called Transformation Nets (TNs) to spec-
ify model transformations. TNs provide a homogenous rep-
resentation of declarative mapping operators and their op-
erational semantics, both in terms of CPN concepts. The
formal underpinning of CPNs enables simulation of model
transformations and exploration of the state space, which
shows all possible firing sequences of a CPN. This allows
applying generally accepted behavioral properties, charac-
terizing the nature of a certain CPN, e.g., with respect
to confluence or termination, as well as custom functions,
e.g., to check if a certain target model can be created with
the given transformation logic, during the observation and
tracking origin phase of debugging.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the main concepts of TROPIC. In Section
3, we show how properties of CPNs can be used to formally
verify model transformations. Section 4 provides a taxon-
omy of possible transformation errors and related CPN prop-
erties, whereas Section 5 reports on lessons learned. Related
work is discussed in Section 6, and finally, Section 7 provides
an outlook on future work.

2. TROPIC IN A NUTSHELL
In the following, we shortly introduce TROPIC, a frame-

work for model transformations applying CPN concepts.
The use of Petri Nets in general enables a process oriented

view on transformations. The abstraction from control flow
prevalent in declarative transformation approaches is achieved
as transitions can fire autonomously depending on the mark-
ings contained in the places only, although the statefulness
of imperative approaches is preserved. CPNs, being a well-
known class of Petri Nets, are most suited for model trans-
formations, since every token carries a value of a certain
type called token color, used to represent model elements
accordingly. Thus CPNs provide a runtime model allowing
transformation designers to gain an explicit, integrated rep-
resentation of the operational semantics of model transfor-
mations, which particularly favors debugging. To profit from
these benefits of CPNs while hiding low-level details and cir-
cumventing restrictions thereof with respect to model trans-
formations (cf. below), the TROPIC framework introduces
a DSL for model transformations called Transformation Net
(TN). TNs operate on two different levels of abstraction,
providing a high-level mapping view and a more detailed
transformation view (see Fig. 1).

Mapping View. The mapping view (upper part of Fig.
1) is used to declaratively define the correspondences be-
tween source (LHS) and target metamodel elements (RHS)
using mapping operators (MOPs) encapsulating recurring
transformation logic. MOPs are represented by means of
Hiearchical CPN concepts [6], providing a packaging mech-
anism allowing a black-box view hiding the operational se-
mantics of a transformation and a white-box view making
the operational semantics explicitly (cf. below). In addition,
a MOP’s interface is only typed by classes, attributes and
references being the main constituents of the Ecore meta-
metamodel. This “weak typing” mechanism based on Ecore
concepts allows to abstract from concrete metamodels, thus
enabling reuse. For example in Fig. 1, showing a very sim-
ple transformation of classes to relations, the C2C MOP is
used to simply map a class of the source model (Class) to
a class in the target model (Table).

Transformation View. Every MOP of the mapping
view requires a well defined operational semantics (i.e., the
white-box view) in the form of some executable piece of
transformation logic realized by an independent set of tran-
sitions and places. In particular, places are derived from
elements of metamodels, creating a place for every class, at-
tribute and reference thereof (see middle part of Fig. 1).
Tokens are created from elements of models and then put
into the according places. Finally, transitions represent the
actual transformation logic. The existence of certain model
elements (i.e., tokens) allows transitions to fire and thus
stream these tokens from source places to target places to
set up an unidirectional transformation. Tokens in target
places finally represent instances of the target metamodel to
be created and additional trace information is hold in terms
of tokens within trace places. Note that the tokens in the
target and trace places in Fig. 1 represent a successfully ex-
ecuted transformation. The LHS of a transtion representing
the pre-conditions as well as the RHS depicting the post-
conditions are visualized by means of color patterns (called
MetaTokens). If a transition is enabled, the colors of the
input tokens are bound to the input pattern. The produc-
tion of output tokens is typically dependent on the matched
input tokens. For instance, if a transition simply streams a
certain token indicated by the same color pattern of Meta-

Tokens on LHS and RHS, exact the same token is produced
as output that was matched at the LHS. For example, the

Figure 1: Conceptual Architecture of TROPIC.

C2C operator is realized by such a transition taking a class
(cf. arc from the place Class to LHS MetaToken) and pro-
ducing an according table (cf. arc from RHS MetaToken to
place Table) and additional trace information. For further
details on TNs we refer to [17].

DSL on top of CPNs. TNs can be fully translated
into existing CPN concepts, although, as already mentioned,
adaptions have been made in order to better suit the do-
main of model transformations. These adaptions comprise,
most importantly, a specific consumption behavior in order
to deal with 1:n relationships and means to represent certain
modeling concepts like multiplicity, ordered references and
inheritance, accordingly.

First of all, the necessity of a specific consumption behav-
ior is motivated in Fig. 2 by means of an example, depicting
a simple TN generating a table for every class contained in
a package. If token P1 would be consumed (which is the de-
fault in CPNs), the transition could only fire once and the
1:n relationship between package and class would not be cor-
rectly resolved. Therefore, TNs provide a specific consump-
tion behavior where tokens are not consumed per default.
Rather the combinations of tokens fulfilling the precondi-
tion are held as trace information by every transition which
allows firing for all possible combinations, which is typically
desired in transformation scenarios. To represent the con-
sumption behavior in CPNs we use an additional History
place storing the already fired combinations in a sorted list
together with an according guard condition, ensuring that
the transition only fires if the current tokens of the precon-
dition are not already contained in the history (see History
Concept in Fig. 2b).

Regarding multiplicities of references, we provide restric-
tions of places in TNs represented by so called anti-places
in CPNs. E.g., if the multiplicity of a reference in a target

Package Arc Inscription

Tokens

1`(1,(“P1“)
1`[[1,1,2,2],[1,1,3,3]]

ID35

Datatype Definitions
colset Class =

product INT * STRING;
colset Reference =

MetaTokens
encoding CPN
Arc Inscriptions

P1

Package_class

Table 1`(1,“P1“,2,“C1“)++ 1`(2,“C1“)++

Package
ID35

Class
History(col1,val1) InsertSorted

[col1,col1,
col2,col2] h

h

product INT * STRING *
INT * STRING

colset Values= list INT;
colset History =list Values;

Arc Inscriptions

TwoColoredToken encoding
CPN type Reference

Class

C1 C2

Table

C1 C2

1 (1, P1 ,2, C1)
1`(1,“P1“,3,“C2“)

1 (2, C1)
1`(3,“C2“)

Package_class Table

ClassReference

tr1
(col1,val1,col2,val2) (col2,val2)

[not(List.exists(fn x=>
Contains(x,[col1,col1,

l2 l2] 4))h)]

Guard
ConditionCPN type Reference

D t t

1`(2,“C1“)++
1`(3,“C2“)

Class

Class

(col2,val2)

col2,col2],4))h)]

History Concept
OneColoredToken

encoding CPN type Class

Colored Petri NetTransformation Neta b
DatatypeClass

(col1 val1)
nil1`(1,"P1")1`(1,"P1") 1`[[1,1,2,2],[1,1,3,3]]

(col1,val1)

h

Package

OneColoredPlace
History

InsertSorted
[col1,col1,col2,
col2] h1`(1,"P1",2,"C1") ++

1`(1 "P1" 3 "C2")

ID35

1`(1,"P1",2,"C1")++
1`(1 "P1" 3 "C2")

1`(2,"C1")++
1`(3,"C2")

(col2,val2)
tr1Package_class

TwoColoredPlace

Table

OneColoredPlace[not (List.exists(fn x=>
Contains(x,[col1,col1,
col2,col2],4))h)]

1 (1, P1 ,3, C2)
(col1,val1,col2,val2)

1`(2 "C1") ++

1 (1, P1 ,3, C2) 1 (3, C2)

1`(2 "C1")++
History concept

Class

OneColoredPlace

(col2,val2)

col2,col2],4))h)]1 (2,"C1") ++
 1`(3,"C2")
1 (2, C1)++
1`(3,"C2")

Figure 2: Translation of the Transformation Net Consumption Behavior to CPNs.

model is set to one, an anti-place holds exactly one token
which is consumed if the reference is transformed, prohibit-
ing repeated firings, cf. [9] for details. To cope with ordered
references in a metamodel TNs introduce ordered places rep-
resented by lists in combination with anti-places in CPNs as
they do not predefine a certain matching order for tokens.
Inheritance between classes in a metamodel is depicted by
means of nested places in TNs (place of superclass contains
places of subclasses) and are represented by one place per
class whereby places of superclasses additionally aggregate
tokens of subclasses in CPNs. Additionally, to allow testing
the absence of tokens, e.g., to create a class only if no link
exists to a parent class (see transition c in Fig. 4a), TNs
provide explicit concepts to represent inhibitor arcs hiding
the CPN pattern presented in [9]. In contrast to metamodel
specific concepts the translation of places, tokens and tran-
sitions itself is straightforward (places in TNs get converted
to places with an according data type in CPNs, tokens in
TNs remain tokens in CPNs, color patterns of transitions
get converted to equivalent arc inscriptions, cf. Fig. 2).

3. PETRI NET-BASED VERIFICATION BY
EXAMPLE

In the previous section we presented the foundations of
TNs and their translation to CPNs which allows for the
use of existing CPN execution engines to simulate TNs and,
most importantly, the formal exploration of CPN proper-
ties. In the following subsections we present how properties
of CPNs can be applied to verify model transformation spec-
ifications by means of an example.

3.1 UML2Relational Example
The example depicted in Fig. 3 and Fig. 4 is based on

the Class2Relational case study1, which became the de-facto
standard example for model transformations. Due to rea-
sons of brevity, only the most challenging part of this case
study is described in this paper, namely how to represent in-
heritance hierarchies of classes within relational schemas fol-
lowing a simple one-table-per-hierarchy approach. As shown
in Fig. 3 our example comprises three classes (cf. tokens in
place Class in Fig 4a) whereby class C2 inherits from class
C1 and class C3 inherits from class C2 (cf. tokens in place
Class_par in Fig 4a). Therefore the desired output model
should contain one Table, aggregating four Columns (all at-
tributes of the three classes).

At a first glance the generated target model in Fig. 4a

1http://sosym.dcs.kcl.ac.uk/events/mtip05

) Source Target

M
M

s
(M

2

AttributeClasspar
*

*attr

A1 : Attribute
attr

Table Column*cols

C1 : Table A1 : Column

M
od

el
s

(M
1) C1: Class

A2 : Attribute
attrpar

attr

C2 : Class A3 : Attribute
attr

A3 : ColumnA2 C l

A4 : Column
cols

cols

cols
cols

C3 : Class A4 : Attribute
attrpar

A3 : ColumnA2 : Column

FIG 2: Transformation Net - Static Part

Figure 3: Metamodel and Model of UML2Relational
Example.

seems to be correct, but on a closer look it can be detected,
that a link from table C1 to column A4 is missing, compared
to the desired target model depicted in Fig. 3. Even in
this small example the error is hard to observe, but it is
even more difficult to track the origin of the error. In the
following we show how predefined formal properties of CPNs
(cf. [10] for an overview) in combination with custom state
space functions can ease these debugging phases using our
current prototype.

3.2 Transformation Verification Prototype
As shown in Fig. 4, the created TN is translated to an ac-

cording CPN, which allows the use of existing Petri Net ex-
ecution engines, e.g., CPN Tools 2, enabling the simulation
of model transformations. Although simulation can be used
to get a first insight into the transformation specification,
i.e., to investigate the operational semantics of the speci-
fied transformation, it is impossible to obtain a complete
proof of behavioral properties, which require formal analysis
methods of CPNs. Therefore the state space is constructed
(see Fig. 4e), used on the hand to obtain predefined prop-
erties (see Fig. 4f), and on the other hand to analyze the
transformation specification using custom functions, e.g., to
check if a certain marking is reachable. The Transforma-
tion Analyzer component (see Fig. 4b) processes the anal-
ysis results, thereby verifying the specified transformation.
Additionally to a source model and the specified transfor-
mation logic needed to calculate the state space, we assume
that the expected target model is known, which is loaded
by the Transformation Analyzer to derive the desired target
markings in CPNs, which is then used for testing the trans-
formation logic by applying custom state space functions.

3.3 Verification of Model Transformations
In the following we show, how formal properties can be

applied to detect errors in the transformation specification.

2http://wiki.daimi.au.dk/cpntools/cpntools.wiki

a

verify

Integer Bounds Upper Lower

Transformation
Analyzer

y

load expected
target model

b
c

translate simulate

Integer Bounds Upper Lower
…
Table_cols 3 0
…..
Upper Multi-Set Bounds
…
Table cols 1`(1200 "Person" 1 "name")++

predefined
state
space

functions
(properties)

custom
state
space

functions

d

f

Table_cols 1 (1200, Person ,1, name)++
1`(1200,"Person",2,"addr")++
1`(1200,"Person",6,"custID")

…
Home Markings

[1320]
D d M kiexportconstruct Dead Markings

[1320]
Dead Transition Instances
TransitiveClosureLinker

pconstruct

e

Figure 4: Transformation Verification Prototype
showing the UML2Relational example

Model comparison using Boundedness Properties.
Typically the first step in verifying the correctness of a trans-
formation specification is to compare the target model gen-
erated by the transformation to the expected, manually cre-
ated target model. To identify wrong or missing target ele-
ments in terms of tokens automatically, Boundedness prop-
erties (Integer bounds and Multiset Bounds) can be applied.
In our example (cf. Fig. 4f), the upper integer bound of the
Table_cols place is set to three whereas the desired target
model requires four tokens, as every column has to belong
to a certain table. By inspecting the multiset bounds one
recognizes that a link to the column A4 originating from an
attribute of class C3 is missing. If such erroneous parts of
the target model are detected, the owning target place (see
error sign besides the Table_cols place in Fig. 4a) as well
as the transitions that produce tokens in these places are
highlighted in the TN. Unfortunately, numerous transitions
are involved in creating the Table_cols link in our example,
which hampers finding the actual origin of the error.

Transition Error Detection using Liveness Prop-
erties. Errors in the transformation specification occur if
either a transition is specified incorrectly or the source model
is incorrect. Both cases might lead to transitions which are
never enabled during execution, so called Dead Transition
Instances or L0-Liveness. The state space report in Fig. 4f
shows that transition b in the TN is a Dead Transition In-
stance, which is therefore marked with an error sign. The
intention of transition b in our example is to calculate the
transitive closure, thus there should be an additional link
from class C to class A as class C also inherits from class A

(see Fig 3). On investigating the LHS of transition b in Fig.
4 we see that the inheritance hierarchy is faulty; the pattern
specifies that class X (white color) is parent of class Y (black

color) and class Z (gray color). To fix the color pattern we
need to change outer and inner color of the second Meta-
Token; now class X (white color) is parent of class Y (black
color), and X is again parent of class Z (gray color). After
fixing the error, the state space can be constructed again
and will not contain dead transitions anymore.

Termination and Confluence Verification using Dead
and Home Markings. A transformation specification must
always be able to terminate, thus the state space has to con-
tain at least one Dead Marking. This is typically ensured by
the history concept of TNs, which prevents firing for recur-
ring combinations. Finally it has to be ensured that a dead
marking is always reachable, meaning that a transformation
specification is confluent, which can be checked by the Home
Marking property requiring that a marking M can be reached
from any other reachable marking.

The generated report in Fig. 4f shows that in our exam-
ple a single Home Marking is available which is equal to the
single Dead Marking (both identified by the marking 1320),
meaning that the transformation specification always termi-
nates. To achieve a correct transformation result, an equal
Home Marking and Dead Marking is a necessary but not a
sufficient condition, as it cannot be ensured that this mark-
ing represents the desired target model. By exploring the
constructed state space using custom functions it is possible
to detect if a certain marking is reachable with the specified
transformation logic, i.e., the target marking derived from
the desired target model. If it is, and the marking is equal to
both, Home Marking and Dead Marking, it is ensured that
the desired target model can be created with the specified
transformation logic in any case.

4. CPN PROPERTIES FOR MODEL TRANS-
FORMATIONS

By applying and analyzing behavioral properties of CPNs
in different case studies we tried to figure out which proper-
ties are useful in the context of model transformation veri-
fication and which kind of errors can be detected. The pro-
posed taxonomy (see Fig. 5) investigates possible locations
of errors, classifies typical model transformations errors and
shows which properties are useful for their detection. The
taxonomy extends our taxonomy presented in [8], focusing
on how common QVT pitfalls can be detected in TROPIC.

Location Granularity Type Transformation Net CPN Property

Metamodel

Syntax Error
(non conformance to MMM)

Semantic Error
(e g missing constraints)

Model

(e.g. missing constraints)

Syntax Error
(non conformance to MM)

LivenessSemantic Error
wrong tokens (e.g. , two
colored token with equal

Boundedness(e.g. , self links, inheritance)

wrong source MM element Liveness
Boundedness

colored token with equal
inner/outer color)

wrong arc from place to
transition

Intra
‐Rule

wrong/too strong/too weak
matching pattern

non‐satisfiable matching
pattern

Boundedness
Reachability

Liveness

LHS wrong/incomplete color
pattern in LHS of transition

non‐satisfiable color pattern
with respect to MM

Transformation

Rule

RHS
wrong target MM element

wrong instantiation of target
elements

Reachability
Boundedness

wrong arc from transition to
target place

wrong/incomplete color
pattern in RHS of transition

Logic Source
MM

coverage

missing/redundant source
MM elements

wrong intermediate Reachability

elements pattern in RHS of transition

missing/redundant arcs from
source place to transition

wrong tokens in/wrong

Inter
‐Rule

Target
MM

coverage
missing/redundant target

MM elements

results/dependencies Boundedness

hungry transitions sharing Home Statenon‐determinism/non‐

connection to trace place

missing/redundant arcs from
transition to target place

non‐termination Dead State

hungry transitions sharing
same source place

Home State
Persistence

non determinism/non
confluence

loops producing new colored
tokens

Runtime
behavior

Figure 5: Taxonomy of Transformation Errors and
CPN Properties.

During specification of model transformations there are
three possible locations of errors, either in (i) the meta-
model, (ii) the model, or (iii) the transformation logic. The
detection of errors in the metamodel is in general out of
scope of transformation languages. As we explicitly repre-
sent model elements—in contrast to other transformation
languages—as tokens in TNs, semantic errors in the model
can be detected by the liveness or boundedness property.
For example, an incorrect source model (e.g., self links rep-
resented by two colored tokens with same inner and outer
color) might lead to dead transition instances or an incor-
rect firing behavior of a transition and thus to an incorrect
number of tokens in the target place.

Errors in the transformation logic itself can be divided
into errors local to a single transition (Intra-Rule Error)
or errors which can only be detected by examining the in-
terrelations between several transitions (Inter-Rule Error).
Intra-rule errors can be divided into errors occurring at the
LHS or RHS of a transition. Common errors on both sides
(e.g., a wrong matching pattern or a wrong instantiation of
target models) can be detected by examining the bounded-
ness properties in comparison to an expected target model or
by custom state space functions checking if a certain mark-
ing is reachable. Due to the fact that these two properties
can be applied in various scenarios we provide special tool
support. If an expected target model is loaded, bounded-
ness properties are automatically checked. Additionally, by
selecting individual tokens of the desired target model (vi-
sualized in the TN editor by the Transformation Analyzer
component), custom state space functions are created check-
ing if the desired marking is reachable or not with the given
transformation specification and the given source model. Fi-
nally, dead transition instances point out that the a given
LHS specification of a transition cannot be fulfilled by the
given source model.

Inter-rule errors occur if transitions depend on other, er-
roneous transitions or if we miss to cover the whole source or
target metamodel. Although these errors can easily be de-
tected by checking for source places that have no arc to any
transition or target places which are not target of any tran-
sitions, it is also possible to apply boundedness and reacha-
bility properties to detect these kind of errors. To verify if
several transitions in a model transformation specifications
interact correctly, the confluence and the termination prop-
erty can be applied. The creation of non-confluent transfor-
mation specifications in TNs might only occur if several tran-
sitions explicitly consume tokens from one place. If, in this
case, the Persistence property is violated (the firing of one
transition disables the firing of another one enabled before),
which would lead to non-confluent model transformations,
an error notification would be given to the transformation
designer. As already stated and detailed in Section 5 the
specific firing behavior of TNs ensures termination.

5. LESSONS LEARNED
This section presents lessons learned from the running ex-

ample and thereby discusses key features of our approach.
History ensures termination. As mentioned above,

TNs introduce a specific consumption behavior in that tran-
sitions do not consume the source tokens satisfying the pre-
condition but hold them in a history. Thus, a transition
can only fire once for a specific combination of input tokens
prohibiting infinite loops, even for test arcs or cycles in the

net. Only if a transition occurs in a cycle and if it produces
new objects every time it fires, the history concept can not
ensure termination. Such cycles, however, can be detected
at design time and are automatically prevented for TNs. In
contrast to model transformation languages based on graph
grammars, where termination is undecidable in general [12],
TNs ensure termination already at design time.

Visual syntax and live programming fosters de-
bugging. TNs represent a visual formalism for defining
model transformations which is, in combination with the ex-
ploration of formal properties, favorable for debugging pur-
poses. This is not least since the flow of model elements
undergoing certain transformations can be directly followed
by observing the flow of tokens, allowing to detect undesired
results easily. Another characteristic of TNs, that fosters
debuggability, is live programming, i.e., some piece of trans-
formation logic can be executed and thus tested immediately
after definition without any further compilation step.

Concurreny in Petri Nets allows parallel execu-
tion of model transformations. As Petri Nets in general
are especially suitable to specify concurrent operations, par-
allel execution of transformation logic is possible, thereby
increasing efficiency of the transformation execution. In the
UML2Relational example shown in Fig. 4a we can concur-
rently transform attributes to columns (cf. transition h) and
calculate the transitive closure (cf. transition a). The prop-
erties Home State and Dead Markings can ensure confluence,
even in case of parallel execution. The chosen representation
of models by TNs let attributes as well as references become
first-class citizens, resulting in a fine-grained decomposition
of models allowing for extensive use of parallel execution.

State Space Explosion limits model size. A known
problem of formal verification by Petri Nets is that the state
space might become very large. Currently, the full occur-
rence graph is constructed to calculate properties leading to
memory and performance problems for large source models
and transformation specifications. Often a marking M has n
concurrently enabled, different binding elements leading all
to the same marking. Nevertheless, the enabled markings
can be sorted in n! ways, resulting in an explosion of the
state space. As model transformations typically do not care
about the order how certain elements are bound, Stubborn
Sets [7] could be applied to reduce the state space nearly to
half size, thus enhancing scalability of our approach.

6. RELATED WORK
The main objective of this paper is to provide formal ver-

ification methods for finding common transformation prob-
lems by employing CPNs. We consider two orthogonal threads
of related work. First, we discuss other approaches which
provide formal verification methods for model transforma-
tions. Second, we relate our proposed taxonomy to other
error taxonomies in the domain of model transformations.

Formal verification of model transformations. Es-
pecially in the area of graph transformations some work has
been conducted that uses Petri Nets to check formal proper-
ties of graph production rules. Thereby, the approach pro-
posed in [15] translates individual graph rules into a Place/-
Transition Net and checks for its termination. Another ap-
proach is described in [4], where the operational semantics
of a visual language in the domain of production systems is
described with graph transformations. The production sys-
tem models as well as the graph transformations are trans-

formed into Petri Nets in order to make use of the formal
verification techniques for checking properties of the pro-
duction system models. Varró presents in [14] a translation
of graph transformation rules to transition systems (TS),
serving as the mathematical specification formalism of var-
ious different model checkers to achieve formal verification
of model transformation. Thereby, only the dynamic parts
of the graph transformation systems are transformed to TS
in order to reduce the state space.

These mentioned approaches only check for confluence and
termination of the specified graph transformation rules, but
compared to our approach, make no use of additional prop-
erties which might be helpful to e.g., point out the origin
of an error. Additionally, these approaches are using Petri
Nets only as a back-end for automatically analyzing proper-
ties of transformations, whereas we are using a DSL on top
of CPNs as a front-end for fostering debuggability.

Error Taxonomies. In [13], a simple error taxonomy
for model transformations is presented which is then used
to automatically generate test cases for model transforma-
tions. A very similar approach is presented by Darabos et.
al. in [3], focusing on common errors in graph transforma-
tion languages in general and on errors in the graph pattern
matching phase in particular.

Both taxonomies are, however, rather general and de-
scribe possible errors in graph transformation specifications,
only. Neither suggestions are presented how the findings of
the generated test cases can be mapped back to the transfor-
mation specification in order to fix possible errors nor formal
validation methods are presented.

7. FUTURE WORK
Up to now, we focused on small model transformation

scenarios only, not least due to the state space explosion
problem. The main disadvantage of the state space algo-
rithms included in CPN Tools is that only full occurrence
graphs can be constructed. The ASCoVeCO State space
Analysis Platform (ASAP) [16], however, provides a tool to
perform state space analysis on CPNs which tackles these
shortcomings by allowing the specification of own, complex
algorithms to construct and to explore the state space. We
plan to integrate the ASAP tool into our prototype for eval-
uating different methods for their suitability in the domain
of model transformations. Additionally, as the transforma-
tion logic by means of color patterns can easily become hard
to comprehend when domain patterns grow larger, we plan
to employ alternative visualization techniques, e.g., object
diagrams or arc inscriptions known from CPNs.

8. REFERENCES
[1] Object Management Group (OMG). Meta Object

Facility (MOF) 2.0 Query/View/Transformation
Specification, Final Adopted Specification, 2007.

[2] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3), 2006.

[3] A. Darabos, A. Pataricza, and D. Varró. Towards
Testing the Implementation of Graph
Transformations. Electronic Notes in Theoretical
Computer Science, 211, April 2008.

[4] J. de Lara and H. Vangheluwe. Automating the
Transformation-Based Analysis of Visual Languages.
Formal Aspects of Computing, 21, Mai 2009.

[5] R. France and B. Rumpe. Model-driven Development
of Complex Software: A Research Roadmap. 29th Int.
Conf. on Software Engineering, 2007.

[6] K. Jensen and L. M. Kristensen. Coloured Petri Nets -
Modeling and Validation of Concurrent Systems.
Springer, 2009.

[7] L. Kristensen and A. Valmari. Finding Stubborn Sets
of Coloured Petri Nets without Unfolding. In Poc. of
Int. Conf. on Application and Theory of Petri Nets.
London, 1998.

[8] A. Kusel, W. Schwinger, M. Wimmer, and
W. Retschitzegger. Common Pitfalls of Using QVT
Relations - Graphical Debugging as Remedy. Int.
Workshop on UML and AADL @ ICECCS’09,
Potsdam, 2009.

[9] N. A. Mulyar and W. M. P. van der Aalst. Patterns in
Colored Petri Nets. Beta, Research School for
Operations Management and Logistics, 2005.

[10] T. Murata. Petri nets: Properties, analysis and
applications. Proc. of the IEEE, 77(4), 1989.

[11] F. Orjeas, E. Guerra, J. de Lara, and H. Ehrig.
Correctness, completeness and termination of
pattern-based model-to-model transformation. In
Proc. of 3rd Conf. on Algebra and Coalgebra in
Computer Science, Udine, 2009.

[12] D. Plump. Termination of graph rewriting is
undecidable. Fundamental Informatics, 33(2), 1998.

[13] J. Uster, J. M. Küster, and M. A. el razik. Validation
of Model Transformations - First Experiences using a
White Box Approach. In Proc. of MoDeVa’06 at
MoDELS’06, Genova, 2006.

[14] D. Varró. Automated Formal Verification of Visual
Modeling Languages by Model Checking. Journal of
Software and Systems Modelling, 3(2), 2003.

[15] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and
G. Taentzer. Termination Analysis of Model
Transformations by Petri Nets. In Proc. of 3rd ICGT,
Natal, 2006.

[16] M. Westergaard, S. Evangelista, and L. M. Kristensen.
ASAP: An Extensible Platform for State Space
Analysis. In Proc. of 30th Int. Conf. on Application
and Theory of Petri Nets and Other Models of
Concurrency, Paris, 2009.

[17] M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger,
W. Schwinger, and G. Kappel. Lost in translation?
transformation nets to the rescue! In Proc. of 3rd Int.
United Information Systems Conf. (UNISCON’09),
Sydney, 2009.

[18] M. Wimmer, A. Kusel, J. Schoenboeck, G. Kappel,
W. Retschitzegger, and W. Schwinger. Reviving QVT
Relations: Model-based Debugging using Colored
Petri Nets. In MoDELS ’09: Proceedings of the 12th
international conference on Model Driven Engineering
Languages and Systems, Denver, 2009.

[19] M. Wimmer, A. Kusel, J. Schoenboeck, T. Reiter,
W. Retschitzegger, and W. Schwinger. Let’s Play the
Token Game – Model Transformations Powered By
Transformation Nets. In Proc. of Int. Workshop on
Petri Nets and Software Engineering, Paris, 2009.

